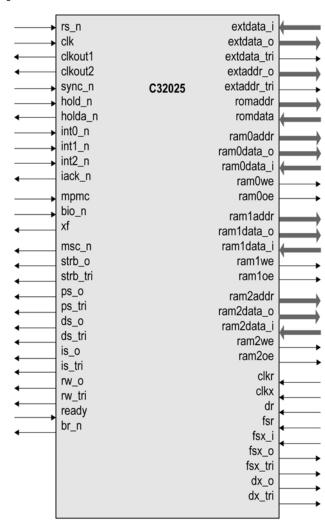


C32025

Digital Signal Processor Megafunction

General Description


The C32025 is a 16-bit fixed-point digital signal processor core. It combines the flexibility of a high-speed controller with the numerical capability of an array processor. The C32025 has the same instruction set as the TMS320C25 and also provides the same interrupts, serial interface and timer.

Developed for easy reuse with ASICs or FPGAs, the core requires under 18000 ASIC gates.

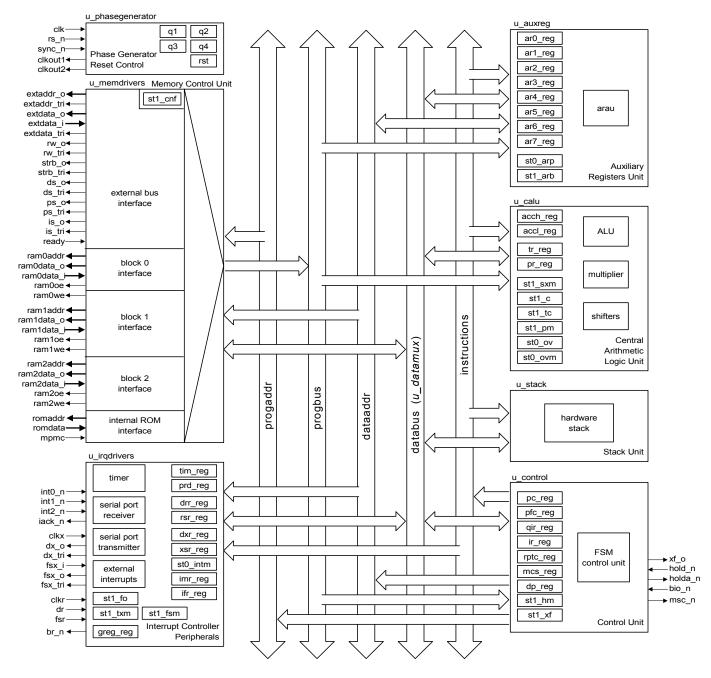
Applications

- Digital sound processing (adaptive filtering, FFT, other special sound effects)
- Voice recognition
- Telecommunications (modems, codecs)
- Medical equipment (diagnostics tools)
- Computers peripherals
- Various embedded data-intensive systems

Symbol

Features

- Control Unit
 - 16-bit instruction decoding
 - Repeat instructions for efficient use of program space and enhanced execution
- Central Arithmetic-Logic Unit
 - 16-bit parallel shifter; 32-bit arithmetic and logical operations
 - 16 x 16 bit parallel multiplier with a 32-bit product
 - 32-bit accumulator with output shifter
 - Single-cycle Multiply-and-Accumulate instructions
- Auxiliary Registers
 - 8 16-bit registers for indirect addressing or temporary data storage
 - 16-bit Auxiliary Register Arithmetic Unit including operations with reversed-carry propagation
- Memory addressing modes
 - Direct using a 9-bit Page Pointer and instruction word's lowest 7-bits
 - Indirect using the Auxiliary Register File
 - Immediate less than 16-bit via instruction word or full 16-bit long immediate following the instruction word
 - Block moves for data/program management
- 8-level Hardware Stack
- Interrupt Controller: 6 interrupt sources, excluding reset and a software interrupt
- Synchronous serial port for direct codec interface
- 16-bit reload timer
- Program Memory organization


- 4K-words of internal ROM
- Internal 256-word RAM block configurable either as program or data space
- o 64K-word external program space
- Data Memory organization
 - 2 Internal 256-word and one 32word RAM blocks
 - 64K-words of external data space
 - 6 memory mapped registers
- 16 Input and 16 Output channels
- Wait states for interfacing slower off-chip devices
- Multiprocessing support
 - Global data memory interface
 - Synchronization input for synchronous multiprocessor configurations
- Concurrent DMA using an extended Hold operation
- Design is strictly synchronous with positiveedge clocking and synchronous reset, no internal tri-states.

Pin Description

Name	Туре	Polarity/ Bus size	Description			
clk			Master clock input			
			All internal synchronous circuits clock			
clkout1	0	-	Master clock output (fclk/4)			
			When High it indicates internal quarter-phases Q3 and Q4			
clkout2			Second clock output (fclk/4)			
			When High it indicates internal quarter-phases Q2 and Q3			
rs_n	I	Low	Hardware reset input			
			Active for 2 cycles resets the device			
mpmc			Microprocessor/microcomputer mode			
			When Low the internal ROM is mapped into program space			
sync_n			Synchronization input			
			Forces the internal quarter-phase to Q1			
hold_n	I	Low	Hold input			
			Forces processor to place the data & address buses and control lines			
		<u> </u>	in the hi-Z state			
holda_n	0	Low	Hold acknowledge output			
			Indicates that processor is in the hold mode			
intO n	,	Low/Fall	External interrupt inputs			
int0_n	I	Low/Fall Low/Fall	External interrupt 0			
int1_n int2_n	I	Low/Fall	External interrupt 1			
iack_n	I	Low	External interrupt 2 Interrupt acknowledge			
IdCK_II	1	LOW	Indicates branching to the interrupt vector			
ps_o	0	Low	Program, data and I/O space select signals			
ds_0	Ö	Low	Frogram, data and 1/O space select signals			
is_o	ő	Low				
ps_tri	0	High	Select signals tri-state control			
ds_tri	ő	High	Enables external tri-state buffers			
is_tri	Ö	High				
rw_o	0	-	Read/write output signal			
			Indicates external transfer direction. High means reading			
rw_tri	0	Н	Read/write tri-state control			
_			Enables external tri-state buffer			
strb_o	0	Low	Strobe signal			
			Low indicates an external bus cycle			
strb_tri	0	High	Strobe tri-state control signal			
			Enables external tri-state buffer			
ready	I	High	Data ready input			
			Indicates that external device is prepared for transfer to be			
			completed			
bio_n	I	Low	Branch control input			
			When active the BIOZ branch occurs			
br_n	0	Low	Bus request output			
			Asserted when the processor requires access to external global data			
			memory space			

Name	Туре	Polarity/	Description		
	0	Bus size	Microstate complete output		
msc_n	0	LOW	Indicates a completion of a memory operation		
xf	0	_	External flag output		
XI	0	-	General purpose output pin		
clkr	I	Fall	Receive clock input		
clkx	I	Rise	Transmit clock input		
dr	I	- NISC	Serial data receive input		
ui	1		Data clocked by clkr		
dx_o	0		Serial data transmit output		
dx_tri	0	High	Serial transmit tri-state control		
ux_uii		Tilgii	Active only while transmitting		
fsr	I	Fall	Frame synchronization pulse for receive input		
fsx_i	I	Fall	Frame synchronization pulse for transmit input		
fsx_o	0	Fall	Frame synchronization pulse for transmit input Frame synchronization pulse for transmit output		
fsx_tri	0	High	Frame synchronization pulse for transmit tri-state control		
15/_11		Tilgii	External Program/ Data/ IO interface		
extaddr_o	0	16	Address bus output		
extaddr_tri	Ö	High	Address tri-state control		
extdata i	I	16	Data bus input		
extdata_i	ō	16	Data bus input Data bus output		
extdata_tri	ő	High	Data bus tri-state control		
extended_tri		1.1.9.1	Internal Program Memory interface		
romdata	I	16	Data input		
romaddr	Ō	12	Address output		
			Internal RAM 0 interface		
ram0data i	I	16	Data bus input		
ram0data o	О	16	Data bus output		
ram0addr	O	8	Data file address		
ram0we	О	High	Data file write enable		
ram0oe	О	High	Data file output enable		
			Internal RAM 1 interface		
ram1data_i	I	16	Data bus input		
ram1data_o	0	16	Data bus output		
ram1addr	0	8	Data file address		
ram1we	0	High	Data file write enable		
ram1oe	0	High	Data file output enable		
			Internal RAM 2 interface		
ram2data_i	I	16	Data bus input		
ram2data_o	0	16	Data bus output		
ram2addr	О	5	Data file address		
ram2we	О	High	Data file write enable		
ram2oe	0	High	Data file output enable		

Block Diagram

C32025 Block Diagram

Functional Description

The C32025 core is partitioned into modules as described below.

Control Unit

Control unit consists of Program Counter (PC) and Prefetch Counter (PFC) used for program addressing and pipelining. Sequencer is responsible for data flow organization. Repeat Counter (RPTC) is used to repeat the execution of several instructions, especially data-intensive ones.

Memory Control Unit

It is an interface between the processor and all on-chip or off-chip memories. There are three internal RAM blocks interfaces, internal ROM interface and external address and data buses. External wait states are possible.

Central Arithmetic Logic Unit

Central Arithmetic-Logic Unit. (CALU) performs:

- Sign-extended shifting
- 32-bit arithmetic operations
- 32-bit logic operations
- 16-bit signed or unsigned multiplication

Auxiliary Registers Unit

Eight auxiliary registers are used for indirect data addressing or temporary data storage. Auxiliary Registers Arithmetic Unit performs operations on current auxiliary register after each indirect data memory read/write.

Stack Unit

Eight level hardware stack for PC storage during subroutine calls and interrupt service.

Peripherals

There is one 16-bit continuously operating timer with programmable period. Synchronous full-duplex serial interface can be used for interfacing serial AD/DA converters and codecs.

Interrupt Controller

There are three external interrupts, both edge and level triggered. Internal interrupt is generated at timer underflow or serial port transmit/receive completion. Those six interrupts are maskable using Interrupt Mask Register (IMR). There is also one non-maskable software interrupt.

Phase Generator

Internal clock cycle divider. Machine cycle consists of four main clock cycles.

Reset Control

Reset input is sampled once a machine cycle and distributed all over the core.

Device Utilization & Performance

Supported	Device		Utilization	Performance	
Family	Tested	LEs	Memory	DSP	F _{max}
Flex ²	EPF10K100E-1	4532	M4Ks; 1 M512	1	24 MHz
Acex ²	EP1K100E-1	4532	M4Ks; 1 M512	1	26 MHZ
Apex ¹	EP20K200E-1	4420	19 ESBs	-	37 MHz
Apex21	EP2A15-7	4528	19 ESBs	-	65 MHz
Cyclone ¹	EP1C6-6	4066	37 ESBs	-	95 MHz
Stratix ¹	EP1S10-5	4370	7 EABs	-	101 MHz
Startix21	EP2S15-3	3835	7 EABs	-	130 MHz

Notes:

- 1. Implemented with 544x16 bit RAM and 4096 x 16 bit ROM
- 2. Implemented with 544x16 bit RAM and 1048 x 16 bit ROM

Core Assumptions

The IACK_N and MSC_N lines are valid only during the quarter-phases Q1 and Q2 (when CLKOUT1 = 0). In other cases their behaviour is unpredictable in the original Texas Instruments TMS320C25 device. The C32025 sets them to 1s in Q3 and Q4, except in the hold mode when MSC_N remains 0.

The original Texas Instruments TMS320C25 serial port doesn't re-start properly when a frame sync pulse occurs in the middle of a transmission. The new transfer following a re-start is interrupted in a moment when previous transmission should be completed as if and there were no frame sync pulses, but the transferred data is re-loaded. The C32025 serial interface works properly as it is described in the specification document.

The CLKR and CLKX inputs are clock inputs in the original Texas Instruments TMS320C25 serial port registers. In C32025 they are not clock signals but are synchronously sampled at every positive edge of the main clock signal. The same applies to the external interrupts inputs INTO_N, INT1_N and INT2_N. They are connected to a negative edge flip-flop in the original device, but in C32025 they are sampled synchronously with

main clock signal. These changes cause delays in the serial port operation and forces the minimum

length of an external interrupt pulse to at least one oscillator cycle.

Some registers are not reset by RS_N in the original Texas Instruments TMS320C25 device, but are reset in the C32025. They are:

ACC 00000000h

PR 00000000h

TR 0000h

ARP 000

ARB 000

DP 000000000

IMR 000000

DRR 0000h

DXR 0000h

Stack all levels are reset to 0000h

OVM 0

TC 0

AR0-AR7 all registers are reset to 0000h

Verification Methods

The C32025 core's functionality was verified by means of a proprietary hardware modeler. The same stimulus was applied to a hardware model that contained the original Texas Instruments TMS320C25 chip, and the results compared with the core's simulation outputs.

Development Environment

- VHDL source code for the C32025
- Synthesis support Complete set of synthesis scripts for Synopsys
- Simulation support A set of scripts and macros for Synopsys, MTI, and Aldec
- Example CHIP_C32025 TMS320C25 compatible design
 This design uses the C32025 and illustrates how to build and connect memories and tri-state buffers
- Extensive HDL Test Bench that instantiates:
 - Example design CHIP_C32025
 - External RAM
 - External ROM
 - External I/O
 - Clock generator
 - o Process that compares your simulation results with the expected results
- A collection of test assembler programs which are executed directly by the Test Bench
- A set of expected results
- Additional documentation
 - Architectural overview
 - Hardware description
 - User Guide
 - Design support including consulting

Deliverables

Netlist Licenses

- Post-synthesis EDIF netlist
- Testbench (self-checking)
- Vectors for testbenches
- Expected results
- Place & Route script
- Simulation script
- Constraint file
- Instantiation templates
- User Documentation

Related Information

Texas Instruments

URL: http://www.ti.com

Contact Information

CAST, Inc. 11 Stonewall Court

Woodcliff Lake, New Jersey 07677 USA

Phone: +1 201-391-8300 Fax: +1 201-391-8694 E-Mail: info@cast-inc.com URL: www.cast-inc.com

HDL Source Licenses

- Synthesizable VHDL or Verilog RTL source code
- Testbench (self-checking)
- Vectors for testbenches
- Expected results
- Simulation script
- Synthesis script
- User Documentation

This megafunction developed by the processor experts at Evatronix SA

Copyright © CAST, Inc. 2004. All Rights Reserved. Contents subject to change without notice.